Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages.
نویسندگان
چکیده
Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag(+) ions in cellulo; the chemical environment of recombined Ag(+) ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag(+) ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag(+) release than acute exposure; Ag-S bond lengths are 2.41 ± 0.03 Å and 2.38 ± 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag(+). The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.
منابع مشابه
Sub-chronic Dermal Toxicity of Silver Nanoparticles in Guinea Pig: Special Emphasis to Heart, Bone and Kidney Toxicities
Silver nanoparticles (Ag NPs) have been widely used as new potent antimicrobial agents in cosmetic and hygienic products. Present study compares the tissue levels of Ag NPs in different organs of Guiana Pigs quantitatively after dermal application and analysis the morphological changes and pathological abnormalities on the basis of the Ag NPs tissue levels. Before toxicological assessments,the...
متن کاملSynthesis and coating of nanosilver by vanillic acid and its effects on Dunaliella salina Teod.
Plant phenolics have high reducing capacity which can be exploited in the synthesis of nanomaterials. In the present study, phytoreductant vanillic acid is used to produce and coat silver nanoparticles. The effects of Ag nanoparticles on the unicellular green algae D. Salina were then investigated. Under optimum pH and temperature, silver ions were reduced to silver metal by vanillic acid. The...
متن کاملSub-chronic Dermal Toxicity of Silver Nanoparticles in Guinea Pig: Special Emphasis to Heart, Bone and Kidney Toxicities
Silver nanoparticles (Ag NPs) have been widely used as new potent antimicrobial agents in cosmetic and hygienic products. Present study compares the tissue levels of Ag NPs in different organs of Guiana Pigs quantitatively after dermal application and analysis the morphological changes and pathological abnormalities on the basis of the Ag NPs tissue levels. Before toxicological assessments,the...
متن کاملThe Cytotoxicity of Silver Nanoparticles Coated with Different Proteins on Balb/c Macrophage Cells
Background and Aims: Coated nanoparticles have different surface chemistry, aggregation, and interaction properties. The aim of this study was to investigate the cytotoxicity of silver nanoparticles AgNPs coated with different proteins on Balb/c macrophages. Materials and Methods: In this study these items were evaluated: 1) the size of aggregation, 2) the quantity and mechanisms of uptake, ...
متن کاملToxicity of Silver Nanoparticles in Aquatic Ecosystems: Salinity as the Main Cause in Reducing Toxicity
Background: In recent years, silver nanoparticles due to their antimicrobial properties, have formed about 56% of nanoparticles global production. Since the released nanoparticles ultimately enter water ecosystems, their maximum toxic effects are magnified in aquatic ecosystems. The aim of this study is to show how salinity can decrease the toxic effects of silver nanoparticles on exposed rai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 16 شماره
صفحات -
تاریخ انتشار 2015